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Abstract: A series of nine 1,3-dipoles, belonging to the families of diazonium betaines, nitrilium betaines,
and azomethine betaines, has been studied by means of the breathing-orbital valence bond ab initio method.
Each 1,3-dipole is described as a linear combination of three valence bond structures, two zwitterions and
one diradical, for which the weights in the total wave function can be quantitatively estimated. In agreement
with an early proposition of Harcourt, the diradical character of 1,3-dipoles is shown to be a critical feature
to favor 1,3-dipolar cycloaddition. Within each family, a linear relationship is evidenced between the weight
of the diradical structure in the 1,3-dipole and the barrier to cycloaddition to ethylene or acetylene, with
correlation coefficients of 0.98-1.00. The barrier heights also correlate very well with the transition energies
from ground state to pure diradical states of the 1,3-dipoles at equilibrium geometry. Moreover, the weight
of the diradical structure is shown to increase significantly in all 1,3-dipoles from their equilibrium geometries
to their distorted geometries in the transition states. A mechanism for 1,3-dipolar cycloaddition is proposed,
in which the 1,3-dipole first distorts so as to reach a reactive state that possesses some critical diradical
character and then adds to the dipolarophile with little or no barrier. This mechanism is in line with the
recently proposed distortion/interaction energy model of Ess and Houk and their finding that the barrier
heights for the cycloaddition of a given 1,3-dipole to ethylene and acetylene are nearly the same, despite
the exothermicity difference (Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187).

Introduction

1,3-Dipolar cycloaddition is a general and powerful method
for the synthesis of five-membered heterocyclic compounds,
owing to the great variety and availability of dipoles and
dipolarophiles.1 According to the classification of Huisgen,1 1,3-
dipoles are classified in two general categories: bent dipoles of
allylic type, which can be represented as XdY+-Z-, and linear
dipoles of propargyl type, which have an additional double bond,
XtY+-Z- (or -XdY+dZ). Actually, a more realistic repre-
sentation of 1,3-dipoles must involve three Lewis structures,
two zwitterionic ones and a diradical one, as is detailed in
Scheme 1.

Renewed interest in 1,3-dipolar cycloaddition reactivity has
recently been stimulated by some high-accuracy quantum
mechanical calculations using the CBS-QB3 multicomponent
method. In a theoretical study of 1,3-dipole cycloadditions
involving three of the most important classes of 1,3-dipoles,
namely the diazonium betaines NtN+-Z-, nitrilium betaines
HCtN+-Z-, and azomethine betaines H2CdNH+-Z- (Z )

O, NH, CH2 in each class), Ess and Houk provided accurate
reaction barriers for cycloadditions of these nine dipoles to
ethylene and acetylene.2,3

In agreement with qualitative predictions of frontier molecular
orbital (FMO) theory,4 these authors found a monotonic decrease
in barrier height from oxides to imines to ylides, as expected
from the smooth decrease of HOMO-LUMO gaps in the same
series of 1,3-dipoles.3 There was, however, an exception with
nitrilium ylide, whose barriers to cycloadditions to both ethylene
and acetylene were found to be 6 kcal/mol higher than those
predicted by the FMO model. On the other hand, quite surprising
and thought-provoking was the finding that barrier heights for
the cycloaddition of a given 1,3-dipole to ethylene and acetylene
are nearly the same, within 1.5 kcal/mol, despite the exother-
micity difference of ca. 16 kcal/mol in the general case, and
even reaching 38 kcal/mol when aromatic cycloadducts are
formed. This result, which is in complete contradiction with
the reactivity-thermodynamics relationship,5,6 was also unex-
pected on the basis of the FMO model, since acetylene and
ethylene have very different HOMO-LUMO gaps. Moreover,
the transition structure (TS) geometries are also remarkably
independent of the dipolarophile. While the distorted dipolaro-† UPMC Université Paris 06.

‡ Institut für Organische Chemie.
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philes have, of course, different bond lengths (1.36-1.39 Å for
ethylene vs 1.22-1.23 Å for acetylene), the distorted 1,3-dipoles
have quasi-similar geometries for a given 1,3-dipole, whether
it adds to ethylene or to acetylene, with deviations of only 0.01
Å in bond lengths and less than 2° in bending angle. This implies
that the transition states for the two families of reactions have
the same degrees of advancement for a given dipole, in
contradiction with the Hammond postulate7 that would predict
earlier (more reactant-like) transition states for the most
exothermic reactions.

In order to rationalize the above results, Ess and Houk have
proposed a new distortion/interaction energy model for 1,3-
dipolar reactivity,2,3 which decomposes the barrier into two
additive components: a distortion energy, ∆Ed

q, that is the energy
required to distort the separate dipole and dipolarophile from
their equilibrium geometry to their TS geometries, and the
interaction energy, ∆Ei

q, of the two distorted fragments in the
TS geometry. This model, which has also been popularized by
Bickelhaupt8 and Morokuma,9 proved amazingly successful for
the 18 above reactions, showing a remarkable correlation
between barrier heights and distortion energies. It was further
noted that the majority of the transition state distortion energy
(80%) arises from deformation of the 1,3-dipole. The distortion
involves bending in all cases, which led to the prediction,
confirmed by dynamic calculations,10 that the reaction should
proceed more readily if the bending vibration is selectively
excited.

The remarkable findings of Ess and Houk prompted us to
search for the fundamental reasons behind the success of the
distortion/interaction model for 1,3-dipolar cycloadditions and
to try to answer a number of questions that the model leaves
open. (i) Why does cycloaddition reactivity follow the
HOMO-LUMO gaps of the 1,3-dipoles, according to FMO
theory, but not that of the dipolarophiles? (ii) Why do the barrier
heights correlate so nicely with the distortion energies, while
this is not the case in many other reactions? (iii) Why are the
geometries of distorted dipoles almost exactly the same, no
matter if they add to ethylene or to acetylene? (iv) Finally, and

most importantly, can one correlate the distortion energies, and
therefore the barrier heights, to some quantitative properties of
the reactants? Since all the 18 reactions at hand have been shown
to proceed by a concerted mechanism, like the great majority
of 1,3-dipolar cycloadditions, according to a general con-
sensus,3,11-13 only the concerted TS will be investigated in this
study.

Why should 1,3-dipoles behave differently from other types
of reactants in elementary one-step reactions? The answer might
lie in the specific nature of their electronic state. Indeed, while
in the general case a reactant is described by a single Lewis
structure, 1,3-dipoles are described as a combination of three
structures Na, Nb, and Nc (N ) 1-9), shown in Scheme 1, the
proportions of which are expected to be dependent on the
geometric distortions. Among these structures, two of them,
the closed-shell zwitterionic structures Na and Nb, are not
particularly reactive, while the singlet diradical structure Nc,
on the contrary, is extremely reactive, like all diradicals. Other
Lewis structures have been shown to be minor and negligible
in all cases.14

Given this multistructure character of the electronic state of
1,3-dipoles, it is clear that the reaction will be facilitated if the
distortion is made in such a way that the diradical character of
the 1,3-dipole increases: i.e., if the weight of its diradical
structure increases. This reasoning led us to propose the
following hypothesis to explain the startling results of Ess and
Houk: In the process of a 1,3-dipolar cycloaddition to ethylene
or acetylene, the 1,3-dipole first distorts so as to reach a reactiVe
state that is independent of the dipolarophile; then it adds with
little or no barrier to the dipolarophile, as in eqs 1 and 2.
Another aspect of this mechanism is that the reactive state is
supposed to have reached some critical diradical character, the
measure of which remains to be specified.
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Scheme 1. The Nine 1,3-Dipoles Involved in This Work and in the Studies of Ess and Houk2,3

phase 1: 1,3-dipole (equilibrium) f 1,3-dipole
(reactive state) ∆E > 0 (1)
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Of course, the 1,3-dipole (reactive state) is not an intermediate
in the usual sense with a given lifetime. It represents a specific
point on the potential surface near or on top of the reaction
barrier (see section C in the Results and Discussion). As such,
the two processes of eqs 1 and 2 represent the two phases of
the 1,3-dipolar cycloaddition which possesses a concerted
mechanism, as amply shown theoretically and experimentally.

This hypothesis would explain at once the similarity of the
barrier heights in additions to ethylene or acetylene, the
similarity of the TS geometries, and the correlation between
barriers and distortion energies. It should be noted in that respect
that Harcourt has been first to stress the importance of the
diradical structure in 1,3-dipoles and its possible importance in
1,3-dipolar cycloadditions and coined the term “concerted
diradical mechanism”.15 Other authors have also discussed the
electronic reorganization that occurs along the reaction coor-
dinate of these reactions.16-18 Note that the dominant role of
the distortion energy has been also stressed for other concerted
reactions, such as the Diels-Alder reaction and the trimerization
of ethylene,19 and for the SN2 reaction.20

The aim of this paper is to test the above hypothesis by
appropriate computational means and to explore its possible
manifestations in terms of a relationship between the barrier
heights and some properties of the reactants in their equilibrium
geometries. Indeed, if eq 1 is the effective mechanism of the
reactions under study, one expects that the reactive state of eq
1 will be easier to attain if the 1,3-dipole already contains a
good deal of diradical character in its ground state at equilibrium
geometry. Therefore, one should find some correlation between
the weights of the diradical structures in the 1,3-dipoles and
the barrier heights to their cycloadditions: the larger the diradical
weight, the lower should be the barrier. Moreover, another way
to test the hypothesis of eq 1 would be to calculate, for each
1,3-dipole, the promotion energy that is required to go from
the dipole’s ground state in its equilibrium geometry to the pure
diradical state in the same geometry. Once again, a correlation
might be anticipated between this vertical energy gap and the
barrier to cycloaddition. These two computational tests both
require a computational method of valence bond (VB) type,21,22

so as to compute the weights of the individual Lewis structures
and the energies of the diabatic diradical states. These will be
carried out in this work by means of the “breathing-orbital

valence bond” method (BOVB), an ab initio valence bond
method which has been amply tested in the past for its
reliability.23

Theory and Methodology

VB Methods. Differently from MO-based methods, in which
the wave functions are based on Slater determinants with delocalized
MOs, VB theory uses Heitler-London-Slater-Pauling (HLSP)
covalent and ionic structures as building blocks of the state
functions. While it is always possible to treat all the orbitals and
electrons at the VB level, here we define an “active system”, which
is made of the orbitals and electrons of the 1,3-dipole that are
directly involved in the cycloaddition, e.g. the π orbitals of the
allylic 1,3-dipoles, or one of the π systems in the linear 1,3-dipoles,
and so on. In all the cases, the active system is made of three orbitals
and four electrons, from which six VB structures can be generated
in principle. However, as has been shown long ago,14 three of these
VB structures are minor and can be neglected, so that we are left
with only three important VB structures: Na, Nb, and Nc in Scheme
1. The electrons and orbitals of the rest of the electronic system,
called a “spectator” or “inactive” system, are treated at the MO
level: i.e., as optimized doubly occupied orbitals of fixed occupancies.

The VB wave function Ψ of each 1,3-dipole is expressed as a
linear combination of HLSP functions, here the three VB structures
Φa, Φb, and Φc, corresponding to Na, Nb, and Nc:

where CK are structural coefficients.
TheweightsoftheVBstructuresaredefinedbytheCoulson-Chirgwin

formula,24 eq 4, which is the equivalent of a Mulliken population
analysis in VB theory.

There are several computational approaches for VB theory at
the ab initio level. In the VBSCF procedure,25 both the VB orbitals
and structural coefficients are optimized simultaneously to minimize
the total energy. As such, the VBSCF method is nearly equivalent
to the MO-based CASSCF method and takes care of the static
electron correlation; however, it lacks dynamic correlation.

The BOVB method23 uses different orbitals for different VB
structures. As such, the orbitals respond to the instantaneous fields
of the individual VB structures rather than to an average field of
all the structures. In doing so, the BOVB method accounts for part
of the dynamic correlation, while leaving the wave function as
compact as in VBSCF.

The BOVB method can be used at several levels of sophistica-
tion. Here we use the so-called “D-BOVB” level,23 in which the
orbitals of the active system are constrained to be each localized
on a single atom, while the spectator orbitals are free to delocalize
over the whole molecule. Because of technical difficulties for the
computation of transition energies at the TS geometries, a partially
delocalized D-BOVB* level is used for the data shown in Figure
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Notes in Chemistry Vol. 30, p 239. (e) Harcourt, R. D.; Roso, W.
Can. J. Chem. 1978, 56, 1093. (f) Harcourt, R. D.; Little, R. D. J. Am.
Chem. Soc. 1984, 106, 41. (g) Harcourt, R. D. J. Mol. Struct.
(THEOCHEM) 1997, 398-399, 93. (h) Harcourt, R. D.; Schulz, A.
J. Phys. Chem. A 2000, 104, 6510. (i) Harcourt, R. D. J. Phys. Chem.
A 2001, 105, 10947.
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Ψ ) CaΦa + CbΦb + CcΦc (3)

WK ) CK
2 + ∑
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2 and for the weights at the TS geometries in Table 1. At this level,
a fully localized L-BOVB calculation is first done, where all inactive
pairs are localized on one atom (lone pairs) or two atoms (bonding
MOs). Then, in a second step, the active orbitals are frozen while
the inactive orbitals are delocalized over the whole molecule.
Comparisons made on ground-state geometries show that this
D-BOVB* level gives weights almost identical with those of the
full D-BOVB level as well as similar gap trends within a series.

The geometries used in this work, as well as the barrier heights
that are reported in Table 1 or plotted in Figures 1 and 3, are taken
from the accurate CBS-QB3(B3LYP/6-311G(d,p)) calculations of
Ess and Houk, previously published in ref 3.

The standard 6-31G* basis set has been used throughout.
Preliminary test calculations have shown that the weights of VB
structures are practically unchanged if one increases the size of
the basis set from 6-31G* to the cc-pVTZ basis set of triple-�
quality. The VB calculations were done with the Xiamen VB
(XMVB) package.25

Results and Discussion

A. Weights of VB Structures for the 1,3-Dipoles. The
calculated weights for the different VB structures of the nine
1,3-dipoles are displayed in Table 1. It can be seen that for
each category of dipoles, the zwitterionic structures bearing a
negative charge on Z (structures Na) decrease in weight from
oxide to imine to ylide, to the benefit of the other zwitterionic
structure (Nb), e.g. 1a > 2a > 3a, 4a > 5a and so on, in
agreement with the decrease of electronegativity from O to NH
to CH2. The diradical structures are far from being negligible
at equilibrium geometry, with weights ranging from 0.22 to 0.41
(column 3 of the table), and even become the major VB
structures for 8 and 9. As a general tendency, the diradical
structures are clearly more important in the allylic dipoles (7-9)
than in the propargyl ones (1-6), as was found in an earlier
VB study performed at a level much lower than the present
one.14

The weights of the diradical structures in the distorted 1,3-
dipoles (TS geometry) are displayed in Table 1, column 4. It is
immediately apparent that the diradical weights are significantly

increased in the distorted geometries relative to equilibrium
geometries in all cases, in agreement with the above hypothesis
that the distortion serves to change the electronic structure of
the dipoles to make them more reactive. It is worth noting that
the relative increase of diradical weight is not the same for all
dipoles. For those compounds that have a weak diradical
character at equilibrium, such as nitrous oxide 1 and fulminic
acid 4, the distortion increases the diradical weight by 46% and
51%, respectively, as compared to only 13% for formazomethine
ylide 9, which already has a prominent diradical weight at
equilibrium.

Let us now consider the relationship between barrier heights
and diradical weights. In the absence of available experimental
data for 1,3-dipolar cycloadditions to ethylene or acetylene in
the gas phase, we will use the barrier heights calculated by Ess
and Houk2,3 at the CBS-QB3 computational level, which is
known to provide relative energies close to chemical accuracy.
The barrier heights are plotted vs diradical weights in Figure 1,
where the different families of 1,3-dipoles (diazonium, nitrilium,
and azomethine betaines) are considered separately and repre-
sented in blue, red, and black, respectively. It is seen that, within
each family, the barrier heights are closely related to the weights
of the diradical structure in the equilibrium geometry of the
1,3-dipole, through linear relationships with excellent correlation
coefficients, ranging fro 0.98 to 1.00. Thus, as predicted by our
hypothesis of a significant diradical character in the reactive
state of eq 1, the lower the diradical weight, the larger the
barrier. It is worth noting that formonitrile ylide 6, which was
found to deviate from the qualitative correlations between barrier
heights and HOMO-LUMO gaps,2 is no longer an exception
and finds its place on the correlation line of nitrilium betaines:
5 and 6, which have the about same diradical weights at
equilibrium, also have barrier heights that are close to each other.

B. Energy Gaps between Ground State and Pure Diradical
Structure in 1,3-Dipoles. The calculated vertical transition ener-
gies between the ground states of the nine 1,3-dipoles and their
pure diradical structures are displayed in Figure 2. Let us

Table 1. Weights of the Various Valence Bond Structures for the Nine 1,3-Dipoles, As Calculated at the D-BOVB Level

Diazonium Betaines

equilbrium geometry
TS geometry

N•dN-Z• (Nc)dipole NtN+-Z- (Na) N-dN+dZ (Nb) N•dN-Z• (Nc)

N ) 1 (Z ) O) 0.547 0.237 0.216 0.316
N ) 2 (Z ) NH) 0.429 0.320 0.251 0.344
N ) 3 (Z ) CH2) 0.317 0.406 0.277 0.364

Nitrilium Betaines

equilibrium geometry
TS geometry

HC•dN-Z• (Nc)HCtN+-Z- (Na) HC-dN+dZ (Nb) HC•dN-Z• (Nc)

N ) 4 (Z ) O) 0.580 0.206 0.213 0.321
N ) 5 (Z ) NH) 0.379 0.356 0.265 0.357
N ) 6 (Z ) CH2) 0.255 0.483 0.263 0.354

Azomethine Betaines

equilibrium geometry
TS geometry

H2C•-N-Z• (Nc)H2CdN+-Z- (Na) H2C--N+dZ (Nb) H2C•-N-Z• (Nc)

N ) 7 (Z ) O) 0.484 0.180 0.337 0.386
N ) 8 (Z ) NH) 0.376 0.244 0.380 0.432
N ) 9 (Z ) CH2) 0.293 0.293 0.413 0.466
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consider first the energies calculated at the equilibrium geom-
etries, represented as horizontal bars. The window of transition
energies is quite large and stretches from 76 to 185 kcal/mol.
As expected, the transition energies are consistently smaller for
the allylic dipoles (7-9) than for the propargylic ones (1-6),
in agreement with the greater diradical character of the former,
in terms of weights (see Table 1): the larger the weight of the
diradical structure in the ground state, the smaller the energy
required to reach the pure diradical state. This tendency is even
clearer if one considers the dipoles family by family: the
transition energies are in the order 1 > 2 > 3, then 4 > 5 ≈ 6,
and finally 7 > 8 > 9: i.e., in reverse order of the diradical
weights displayed in Table 1. Figure 2 also displays the
transition energies from ground state to diradical structure in
the geometry of the TS, as represented by crosses. It is seen
that the transition energies are consistently smaller in the
distorted geometries, showing once again that the electronic
states of the 1,3-dipoles are more diradical-like in the distorted
geometries than at equilibrium.

Back to the properties of 1,3-dipoles at equilibrium geom-
etries, let us now consider the relationship between the transition
energies to the diradical structure and the barrier heights to
cycloadditions. Figure 3 displays such a relationship for the nine
1,3-dipoles, family by family. As has been found for the
diradical weights, the transition energies from ground state to

diradical structures correlate very well with the barrier heights,
displaying nice linear relationships with correlation coefficients
equal to 0.99 or 1.00. Once again, 6 finds its natural place on
the correlation line of nitrilium betaines and is no longer an
exception as in the barrier-FMO relationship.2,3

C. What is the Nature of the “Reactive State” of
1,3-Dipoles? Our hypothesis of a cycloaddition mechanism
following eq 1 implies that the 1,3-dipoles do not react before
they reach a certain reactive state, which is independent of the
dipolarophile. Now how is this reactive state characterized, and
are its characteristics transferable from one reaction to the other
among the 18 reactions studied here? Up to now we only know
that this reactive state has an increased diradical character
relative to the corresponding 1,3-dipole in its equilibrium
geometry. This diradical character can be measured in two ways:
the weight of the diradical structure or the energy difference
between the actual state and the pure diradical state.

One may first notice from Table 1 that the diradical weight
increases more from reactant to TS when the starting diradical
weight is small (e.g., 4) than when it is large (e.g., 9). The
diradical weight increases indeed by 51% in 4, vs 35% in 5
and 6 and only 13% in 9, as if what mattered was to reach a
critical value of the diradical weight in the TS, no matter the
weight in the reactants. Of course, this critical diradical weight
cannot be the same for the linear dipoles (propargylic, 1-6)

Figure 1. Plots of CBS-QB3-computed reaction barriers to cycloaddition, taken from ref 3, vs diradical weights of the 1,3-dipoles in their equilibrium
geometries: (blue circles) diazonium betaines; (red triangles) nitrilium betaines; (black squares) azomethine betaines. Solid symbols indicate reactions with
ethylene, and open symbols indicate reactions with acetylene.

Figure 2. Vertical energy gaps (kcal/mol) between the ground states and pure diradical states of 1,3-dipoles, in their equilibrium geometries (bars) and in
their transition state geometries (crosses). Blue, red, and black symbols correspond to diazonium, nitrilium, and azomethine betaines, respectively.
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and for the bent dipoles (allylic, 7-9), which are of rather
different natures. From Table 1, this critical weight can be
estimated as 0.34 ( 0.025 for the linear dipoles and 0.426 (
0.04 for the bent dipoles. However, the best property that
displays some constancy throughout the various distorted dipoles
is probably to be found in the transition energies from ground
state to pure diradical state. Thus, it is seen in Figure 2 that
these energy gaps vary considerably from one dipole to another
at the equilibrium geometries (horizontal bars in Figure 2),
spanning a range of 76 to 185 kcal/mol, with somewhat erratic
values. In contrast, the transition energies span a much narrower
range in the distorted geometries (crosses in Figure 2), from 66
to 101 kcal/mol, and do not depart much from an imaginary
horizontal line. Moreover, if one considers the linear and bent
dipoles separately, as argued above, the range of transition
energies is further reduced, to 82-101 kcal/mol in the first case
(1-6) and 66-86 kcal/mol in the second one (7-9). It appears
therefore that the fundamental property that characterizes the
reactive state of eq 1 is a critical energy gap between this state
and the pure diradical structure, and this critical energy gap
amounts to 91 ( 10 kcal/mol for propargylic dipoles and 76 (
10 kcal/mol for the allylic dipoles.

Since the reactive state is characterized by its diradical
character, no matter which way the latter is quantified, it is
logical to expect that the greater the diradical character in the
reactant, the lower the energy required to reach the reactive state.
In other words, a relationship between the barrier and the
properties of the 1,3-dipoles in their equilibrium geometries is
expected. This relationship exists, as has been shown above (see
Figures 1 and 3). However, it is not universal: i.e., it only holds
within a given family of 1,3-dipoles. The reason for that
becomes clear if one considers the TS geometries of the 1,3-
dipoles, which can be consulted in ref 3, and the nature of the
distortion that is required to increase the diradical character in
each family of dipoles. In diazonium betaines, the distortion is
pure bending and amounts to 40 ( 5° on average.3 In nitrilium
betaines, the bending is less important, 33 ( 6°, and is
accompanied by orbital rehybridization of the type p f sp2 at
the CH site. Lastly, in azomethine betaines, the bending motion
is tiny, only 9 ( 2°, while rehybridization of another type, pf
sp3, takes place at the CH2 site. Therefore, it is clear that, for a
given diradical weight in the reactant, the energy required to
reach the critical diradical weight of the reactive state will not
be the same depending on whether the 1,3-dipole belongs to

the diazonium, nitrilium, or azomethine family of betaines. This
readily explains why the barrier/diradical-weight linear relation-
ship can only hold within an individual family, rather than being
universal. The same reasoning holds if the transition energy from
ground state to pure diradical state is taken as the criterion to
quantify the diradical character, as in Figure 3.

D. Relation to Other Reactivity Models. As has been seen
above,neither theFMOmodel4nor thereactivity-thermodynamics
relationship,5,6 taken separately, can account for the fact that
the barrier heights and distorted dipole geometries are practically
the same, whether the dipoles add to ethylene or acetylene.
However, it should be noted that the FMO model would predict
higher barriers and later transition states for the addition to
acetylene, since the HOMO-LUMO gap is greater in acetylene
than in ethylene, leading to weakened interactions between
frontierorbitals.Ontheotherhand, thereactivity-thermodynamics
relationship would predict a lower barrier height and earlier
transition state for the addition to acetylene: i.e. predictions
opposite to those of the FMO model. It follows that the
combination of the two models would lead to the correct
prediction. Of course, using a combination of two models is
not really practical and would not allow semiquantitative
predictions to be made, but the point we want to make is that
the FMO model does not really fail for 1,3-dipolar cycloadditions.

Actually, the FMO model alone is successful, as Ess and
Houk showed,2,3 if applied to the 1,3-dipoles but not to the
dipolarophile, with only one exception: formonitrile ylide 6. This
further supports the validity of our proposed reaction mecha-
nism, in terms of eq 1, in which the barrier only depends on
the first formal phase, eq 1, which itself only depends on the
1,3-dipole. In this line, the connection between the FMO model
and our correlations based on the diradical character is now
clear: the smaller the HOMO-LUMO gap of the 1,3-dipole,
the larger the weight of its diradical structure in the ground
state, and the smaller the transition energy required to reach
the pure diradical diabatic state. The formulation of 1,3-dipole
reactivity in terms of diradical character has, however, two
advantages over a formulation in terms of HOMO-LUMO
gaps. (i) The calculated LUMO energy is generally quite basis-
set dependent, thus making it difficult to use the FMO model
in a quantitative way. The calculation of the weights of valence
bond structures does not generally have this inconvenience. (ii)
The diradical weights and/or transition energies are calculated
at the correlated-electron level, while the FMO model considers

Figure 3. Plots of CBS-QB3-computed reaction barriers to cycloaddition, taken from ref 3, vs vertical energy gaps between the ground states of 1,3-dipoles
and the vertical pure diradical states. The symbols are the same as those in Figure 1.
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the 1,3-dipoles at the one-electron level. This computational
level, which is devoid of electron correlation, does not describe
very well molecules that have a multireference character,
particularly when the diradical character is important.

Our calculations support and complete the distortion/interac-
tion energy model of Ess and Houk, which is based on the fact
that the barrier heights for 1,3-dipolar cycloadditions to ethylene
or acetylene only depend of the properties of the 1,3-dipoles
and are closely related to their distortions in the geometries of
the transition states.2,3 In addition, the present work elucidates
the reason why the distortion of the 1,3-dipole is the key event
that allows the reaction to take place. If the distortion merely
consisted of orienting the cycloaddends so as to favor the overlap
of the newly interacting orbitals, the distorted geometries would
depend on the nature of the dipolarophiles, since acetylene has
a much shorter bond length than ethylene. On the other hand,
if, as our calculations suggest, the role of the distortion is to
transform the electronic state of the 1,3-dipole so as to make it
more reactive, then identical distortions are expected for
additions to ethylene and acetylene, which is indeed the case.

E. Conclusion. This work has been stimulated by the recent
findings of Ess and Houk that the barrier heights and transition
structure geometries are identical for cycloadditions to ethylene
or acetylene2,3 and only depend on the distortion of the 1,3-
dipole. In order to explain these findings, we propose a reaction
mechanism in which the 1,3-dipole first distorts so as to reach
a reactive electronic state that has a significant diradical
character, which then adds with little or no barrier to the
dipolarophile. This mechanism is supported by the calculated
properties of the distorted 1,3-dipoles, which share some
common features from one reaction to the other in terms of
diradical weights and especially in terms of transition energies.
Thus, the window of transition energies from ground state to
diradical states is fairly narrow in the distorted dipoles, which
allows a definition of the “reactive state” of 1,3-dipoles that
must be reached before the cycloaddition takes place: the
reactive state is a state having enough exalted diradical
component so that its transition energy to the pure diradical
state is reduced to 91 ( 10 kcal/mol for propargyl dipoles and
76 ( 10 kcal/mol for the allylic dipoles.

The present work also evidences a clear correlation between
the diradical character of nine 1,3-dipoles, belonging to the
families of diazonium, nitrilium, and azomethine betaines, and
their reactivity to cycloaddition to ethylene or acetylene.

Whether the diradical character is measured as the weight of
the diradical structure at equilibrium or as the energy gap
between the ground state of the 1,3-dipole and its diradical
diabatic state, the correlations with the barrier heights are
excellent, with correlation coefficients ranging from 0.98 to 1.00.
Of course, owing to structural differences between the different
families of 1,3-dipoles, the correlation is not general but only
holds within a given family. Be this as it may, all the 18
reactions under study display a clear relationship between the
barrier and a property of the reactants that can be quantitatively
estimated. Finally, both the nature of the reactive state and the
above correlations support the early assumption of Harcourt that
the diradical valence bond structure of 1,3-dipoles should play
an important role in 1,3-dipolar cycloadditions.15

An important point to note is that the diradical character of
the reactive state, albeit important, is still very far from that of
a pure diradical state. Therefore, the present results can in no
way be interpreted as a support either for a diradical mechanism
or for a stepwise reaction being as good as the concerted
reaction. Finally, it must be kept in mind that the 18 reactions
investigated here are cycloadditions in which the dipolarophiles
are not polarized by substituents and are of comparable electron
richness. Thus, as noted by Ess and Houk in terms of the
distortion/interaction energy model, “when distortion energies
are approximately the same for a series of different dipolaro-
philes, interactions energies (primarily FMO interactions) vary
and become the controlling factor”.3 Moreover, the interaction
energies will be widely different on comparison of the transition
states of electron-rich and electron-poor alkenes. Therefore, it
is probable that our correlations between barrier heights and
diradical character only apply for dipolarophiles of comparable
richness. The influence of asymmetric substituent effects on the
model is also unknown for the moment. However, in any case,
it is clear that the diradical character of 1,3-dipoles is an
important factor that favors 1,3-dipolar cycloaddition reactions.
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